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ABSTRACT
Noisy Intermediate-Scale Quantum (NISQ) quantum computers are
being rapidly improved, with bigger numbers of qubits and im-
proved fidelity. The rapidly increasing qubit counts and improving
the fidelity of quantum computers will enable novel algorithms to
be executed on the quantum computers, and generate novel results
and data whose intellectual property will be a highly-guarded se-
cret. At the same time, quantum computers are likely to remain
specialized machines, and many will be controlled and maintained
in a remote, cloud-based environment where end users who want
to come up with novel algorithms have no control over the phys-
ical space. Lack of physical control by users means that physical
attacks could be possible, by malicious insiders in the data center,
for example. This work shows for the first time that power-based
side-channel attacks could be deployed against quantum comput-
ers. The attacks could be used to recover information about the
control pulses sent to quantum computers. From the control pulses,
the gate level description of the circuits, and eventually the secret
algorithms can be reverse engineered. This work demonstrates how
and what information could be recovered, and then in turn how to
defend from power-based side-channels. Real control pulse informa-
tion from real quantum computers is used to demonstrate potential
power-based side-channel attacks. Meanwhile, proposed defenses
can be deployed already today, without hardware changes.

1 INTRODUCTION
Quantum computers have gained more and more attention, espe-
cially as large numbers of quantum computers are easily accessible
over the internet. Due to the expensive nature of the quantum
computing equipment, these computers are currently available
as cloud-based systems. Cloud-based services such as IBM Quan-
tum [26], Amazon Bracket [5], and Microsoft Azure [35] already
provide access to various types of Noisy Intermediate-Scale Quan-
tum (NISQ) from different vendors. Remote access makes it easy for
different users and companies to run algorithms on real quantum
computers without the need to purchase or maintain them. On the
other hand, the users have no control over the physical space where
the quantum computers are. While the cloud providers may not
be bad actors themselves, the threat of malicious insiders within
data centers or cloud computing facilities is well-known in classical
security. These malicious insiders may have physical access to the
equipment of quantum computers.

Separately, a large number of companies and startups are work-
ing on the development of quantum algorithms. These companies
or startups do not themselves have quantum computers, but depend
on remote access to real machines from the cloud providers. They
can use a convenient pay-per-use model to run circuits on real

quantum computers. However, given possibly important intellec-
tual property being developed by companies and startups, there
is a need to understand if and how sensitive information could be
extracted from the operational behavior of quantum computers.
Without physical control of the machines, their circuits may be
subject to side-channel attacks, even without the knowledge of
these companies or startups.

1.1 From Classical to Quantum Computer
Side-Channel Attacks

In classical computers, side-channels of different types are a well-
known threat [46]. Among the side-channels there are timing- and
power-based channels, which are major categories of side-channels
that have been researched. There are also thermal, EM, acoustic, and
a variety of other categories of side-channels. Timing side-channels
are easier to exploit as they only require timing measurement of
the victim to be done. Power side-channels are more powerful, but
require physical access. With physical access, malicious insiders or
other attackers can get detailed information about the execution
of the target computer. In classical computers, there are even exist-
ing platforms for exploiting and researching power-side channels.
Meanwhile, prior to this work, there has not been an exploration
of power-side channels in real quantum computers.

In quantum computers, directly copying the quantum states is
not possible due to the no-cloning theorem. The no-cloning theorem
states that it is impossible to create an independent and identical
copy of an arbitrary unknown quantum state [18, 39, 52]. How-
ever, there is no such limitation on the classical control operations
performed on quantum computers. Quantum computers, such as
superconducting qubit machines from IBM, Rigetti, or others, use
RF pulses to “execute” gate operations on single qubits or two-qubit
pairs. The control pulses are fully classical and could be spied on.
Given control pulse information, as this work shows, it is possible
to reverse engineer the sequence of quantum gates executed on
the quantum computer. From the sequence of gates, the algorithm
executed can be recovered. As this work shows, anybody with ac-
cess to power measurements of the control pulse generation logic
can capture and recover the control information. While this work
explores power-based side-channels, the same or similar ideas could
apply to EM or other types of physical side-channels. This is left as
future work.

1.2 Power-Side Channel Threats to Quantum
Computers

This work explores a number of new physical security issues in
quantum computers. As these computers are currently, mostly
cloud-based, without the user’s control over the physical envi-
ronment, even if the cloud provider is trusted or has no business
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incentive to spy on users, malicious insiders or other attackers
could be motivated to use side-channels to extract information
about algorithms executed on these computers.

Figure 1b shows the operation of today’s cloud-based quantum
computers. Remote users submit jobs to the cloud provider, where
the job management or similar server dispatches the jobs to partic-
ular quantum computers, also called backends on IBM Quantum.
Typically the digital instructions are sent to controller logic, such
as microwave electronics, which generate the actual control signals
sent to the quantum computer.

In this work, we focus on and demonstrate potential new, side-
channels used to extract information about user circuits, i.e., quan-
tum programs. Rather than target the superconducting qubits them-
selves (which are isolated in a cryogenic refrigerator), we focus on
the controller electronics shown in the middle of Figure 1b.

We note that in the threat model, discussed in more detail in
Section 3, we assume that the classical computer components, e.g.,
the job management server, are protected from side-channels. There
is a large body of research on the protection of classical computers
from power side-channels, e.g., [1, 3, 6–8, 11, 19, 37, 41, 49, 50].
Meanwhile, controller electronics of quantum computers have not
been analyzed for potential side-channels before this work.

1.3 Attacker’s Goals
The focus of this work is to demonstrate that it can be possible
to recover various information about user circuits, i.e., quantum
programs, from side-channel information. We present different
types of possible information that can be recovered:

(UC) User Circuit Identification – Given knowledge about the
set of possible circuits executed on the quantum computer,
find which circuits the user actually executed.

(CO) Circuit Oracle Identification – Given a known circuit,
such as Bernstein-Vazirani [9], but an unknown oracle, find
the configuration of the oracle used in that circuit.

(CA) Circuit Ansatz Identification – Given a known circuit,
such as a variational circuit used in machine learning appli-
cations [40], but an unknown ansatz, find the configuration
of the ansatz used in that circuit.

(QM) Qubit Mapping Identification – Given a known circuit,
identify the placement of which physical qubits were used.

(QP) Quantum Processor Identification – Given knowledge
about the pulses for quantum processors and a circuit, find
the quantum processor on which the circuit was executed.

(RP) Reconstruction from Power Traces – Given knowledge
about the pulses for quantum computer basis gates, recon-
struct the complete, unknown circuit from the power traces.

1.4 Types of Attacks
Considering the attacker’s physical access to the quantum comput-
ers, this work demonstrates various types of attacks that can be
used to recover the above information.

Timing Attack – While this work mainly focuses on power
side-channels, we start off by demonstrating simple timing side-
channels to help recover user circuits (UC). The limitation of this
attack also motivates work on power side-channels attacks.

Single Measurement Attacks – We next demonstrate single
measurement attacks by showing that total energy data and average
power data can be used to recover users’ circuits (UC) as well. This
can also be applied to other attacker’s goals we listed in the previous
section.

Total Power Single Trace Attacks – Considering a restricted
scenario where the attacker does not access each channel, but
instead measures a trace of the total power of all the channels, the
attacker can recover user circuits (UC), circuit oracle (CO), circuit
ansatz (CA), qubit mapping (QM), and quantum processor (QP)
with some accuracy.

Per-Channel Single Trace Attacks – We present attacks that
collect power traces from drive and control channels. There are
unique drive and control channels, on which microwave pulses
are sent, for each single qubit gate and multi-qubit gate. We show
that attackers can collect power traces of these channels to perform
reconstruction from power traces (RP), thus recovering user circuits.

1.5 Paper Organization
The remainder of the paper is organized as follows:

• Background on quantum computation is given in Section 2.
• The threat model is provided in Section 3.
• Experimental setup is discussed in Section 4.
• Evaluation of the attacks is in Section 5.
• Defenses are discussed in Section 6.
• The paper concludes in Section 7.

2 BACKGROUND
This section provides background on quantum computers and typi-
cal quantum computer workflow.

2.1 Qubits and Quantum States
The quantum bit, or qubit for short, is the most fundamental build-
ing block of quantum computing and is conceptually similar to the
bit in present classical computing. A qubit, analogous to a bit, has
two basis states, denoted by the bra-ket notation as |0⟩ and |1⟩.
However, a qubit can be any linear combination of |0⟩ and |1⟩ with
norm 1, but a classical bit can only be either 0 or 1. Generally, a
qubit |𝜓 ⟩ is more specifically represented as:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ,
where 𝛼 and 𝛽 are complex numbers satisfying |𝛼 |2 + |𝛽 |2 = 1.
It is common to denote qubits using vector representation. The

basis states for one qubit can be expressed as two-dimensional
vectors, for example, |0⟩ = [1, 0]𝑇 and |1⟩ = [0, 1]𝑇 . As a result,
the state |𝜓 ⟩ above can be written as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ = [𝛼, 𝛽]𝑇
For multi-qubit states, similar representations exist. For instance,
the four basis states |00⟩, |01⟩, |10⟩, and |11⟩ make up the space on
which two-qubit states live. More generally, there are 2𝑛 basis states
in the space of 𝑛-qubit states, ranging from |0 . . . 0⟩ to |1 . . . 1⟩, and
a 𝑛-qubit state |𝜙⟩ can be expressed by:

|𝜙⟩ =
2𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩

where
∑2𝑛−1
𝑖=0 |𝑎𝑖 |2 = 1.
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(a) Running quantum programs with Qiskit on IBM Quantum.

Quantum 
Computer 
Backend

Cloud 
Users

Job 
Management 

Server

Microwave 
Electronics and 

Controllers

Recover Control 
Pulses

Obtain Transpiled
Circuit

Retrieve 
User’s Circuit

Power
Side-Channel 

Attack

(b) Operation of a cloud-based quantum computer, highlighting po-
tential side-channel threats.

Figure 1: Process of running quantum circuits using Qiskit on IBM Quantum and the proposed threat model in the process.

2.2 Quantum Gates
Analogous to classical computing, the basic quantum operations
at the logic-level are quantum gates. Quantum gates are unitary
operations that modify the input qubits, and quantum algorithms
consist of a series of quantum gates that can change input qubits
into specific quantum states. A quantum gate 𝑈 must satisfy the
equation 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 , meaning that a quantum gate must
be a unitary operation. A quantum gate 𝑈 operating on a qubit
|𝜓 ⟩ can be written down as |𝜓 ⟩ → 𝑈 |𝜓 ⟩. In the vector-matrix
representation, 2𝑛 × 2𝑛 matrices can be used to express 𝑛-qubit
quantum gates. For instance, the Pauli-𝑋 gate, a single-qubit gate
that flips |0⟩ to |1⟩ and |1⟩ to |0⟩, is comparable to the NOT gate
in classical computation. One another important example is the
CNOT gate, also known as the CX gate, which is a two-qubit gate
that if the control qubit is in the state |1⟩, a Pauli-𝑋 gate will be
applied to the target qubit, and otherwise nothing will happen.
Their matrix representations together with some other matrices
of quantum gates are shown below. One thing to note is that we
follow IBM Qiskit’s [42] qubit order, where the leftmost qubit is the
most significant and the rightmost qubit is the least significant. In
light of this, the CX gate may have a different matrix representation
in other papers if different qubit order is followed.

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, CX =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


RZ(\ ) =

[
𝑒−𝑖

\
2 0

0 𝑒𝑖
\
2

]
, SX =

1

2

[
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

]
It has been demonstrated that any unitary quantum gate can

be approximated within a minor error using only a small number
of quantum gates [15]. Therefore, currently available quantum
computers usually have a few basis gates, and by grouping the basis
gates, they can form other quantum gates. It is not necessary and not
possible for them to support all quantum gates. These basis gates,
also called native gates, are one of the important configurations of
quantum processors. Depending on the low-level control, different
manufacturers or even different versions of quantum processors
may have different native gates, which is a trade-off between many

0 34 67 101 134 168
System cycle time (dt)

X( /2)
D0

no freq.

Name: SX, Duration: 160.0 dt

(a) SX pulse

0 34 67 101 134 168
System cycle time (dt)

X( )
D0

no freq.

Name: X, Duration: 160.0 dt

(b) X pulse

0 544 1089 1633 2177 2722
System cycle time (dt)

VZ( /2)

Y( ) X( )
D0

no freq.

X( /2) CR( /4) CR( /4)
D1

no freq.

CR( /4) CR( /4)
U0

no freq.

Name: CX, Duration: 2592.0 dt

(c) CX pulse

Figure 2: SX, X, and CX control pulses. All of the pulses are gathered
on ibm_lagos. SX and X are on qubit 0, and CX is on qubit 0 and 1.

properties such as error rate and efficiency. In this paper, we based
our experiments on IBM Quantum. As an example, for the majority
of IBM Quantum quantum computers, the basis gates include I, RZ,
SX, X, and CX. The matrix representations of these gates were shown
above this paragraph. Before being run on the actual quantum
computing hardware, other quantum gates, like the widely used
Hadamard gate, must be decomposed into these basis gates.

2.3 Control Pulses
Superconducting qubits are usually controlled by microwave pulses.
To actually perform each basis gate on a quantum computer, correct
control pulses corresponding to each of the gates need to be gener-
ated and sent to the quantum computer. Examples of control pulses
for SX, X, and CX gates are shown in Figure 2. On IBM Quantum, I
gate does nothing and it only adds delays in the control pulses. RZ
gate is a virtual gate and does not have any real pulse. More details
about the virtual RZ gate will be discussed in Section 6.1.
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A pulse is usually defined by the envelope, frequency, and phase.
As an instance for the superconducting qubit control, the envelope
specifies the shape of the signal which is generated by the arbitrary
waveform generator (AWG), a common lab instrument, and the
frequency and phase specify a period signal that will be used to
modulate the envelope signal. These two signals together form the
output signal that will be sent to the qubit. The typical settings to
drive the qubits are shown in Figure 3.

To store envelopes, they are usually discretized into a series of
time steps and each element specifies the amplitude at a specific
time step. Though envelopes can be in any arbitrary pattern, they
are usually parametrized by some predefined shapes so that only
a few parameters are needed to specify the envelope. These pa-
rameters typically include the duration indicating the length of the
pulse, the amplitude indicating the relative strength of the pulse,
and other parameters specifying the shape of the pulse. For example,
the Derivative Removal by Adiabatic Gate (DRAG) pulse [22, 38] is
a standard Gaussian pulse with an additional Gaussian derivative
component and lifting applied, and it can be specified with sigma
that defines how wide or narrow the Gaussian peak is, and beta
that defines the correction amplitude, as well as the duration and
amplitude. Another example is the Gaussian square pulse which
is a square pulse with a Gaussian-shaped risefall on both sides
lifted such that its first sample is zero. Apart from the duration and
amplitude, it is parametrized by sigma which defines how wide or
narrow the Gaussian risefall is, the width that defines the duration
of the embedded square pulse, and the ratio of each risefall duration
to sigma.

On IBM Quantum, the pulses for all native gates are predefined
while their parameters are frequently updated by calibrations so
that they can maintain high fidelity over time. Pulse parameters are
automatically measured and calibrated, and are ready to be used to
generate the control pulses for quantum circuits.

2.4 Pulse-Level Circuit Description
To fully describe a quantum program, all pulses that need to be
performed, when pulses should start relative to the starting point of
the circuits, and to what qubits the pulses will be applied, need to be
specified. This information together with other useful information
forms a so-called pulse-level circuit.

Similar to how pulses are discretized, circuits are also discretized
in time steps at the low-level. In this way, pulses can be conveniently
fit into the circuits. In addition, it is also necessary to specify to
which qubits quantum gates, measurements, and other operations
should be applied. With all this information at hand, circuits can be
well-defined and ready to be executed in quantum devices. After
quantum circuits start to run, when the specified starting time
steps are reached, the superconducting quantum computer control
equipment sends the pulses defined by their information along
electric lines to control the specified qubits.

2.5 Running Quantum Programs on Quantum
Computers

To start the process of running a quantum program on nowadays
cloud-based superconducting quantum computers, the quantum
circuits that solve the desired problem need to be created first. Then

the quantum circuits go through a series of transforming processes,
and are sent to the cloud to execute and finally users can get the
results. We show a typical process of running quantum programs
with Qiskit on IBM Quantum in Figure 1a.

The first step is to build the logic-level circuit with a quantum de-
velopment kit, such as Qiskit [42], Braket SDK [4], Q# [36], Cirq [16].

The logic-level circuit can also be represented graphically, as
shown in the “Gate-Level Circuit" in Figure 1a, lines that go from
left to right stand in for qubits, while the symbols on the lines stand
for operations. Without further information, qubits are typically
thought to be in the |0⟩ state at the start of the quantum circuit.
Qubits then evolve through left-to-right sequential processes and
are controlled by quantum or classical operations denoted in the
circuit plot. For the most part, measurements are performed at the
end of the quantum circuit to measure, obtain, and store qubit data
in classical memory for future evaluations.

Analogous to classical computing, quantum circuits are usually
high-level instructions. Before executing the quantum circuits on
quantum computers in reality, a series of operations need to be done
to transform them into low-level and hardware-specific instructions,
which is similar to the preprocessing, compilation, and assembly
process for classical computing programs. To be specific, quantum
circuits can be described using a number of different input methods
and gates, but eventually, need to be converted to only the native
gates supported by the quantum computer.

Transpile is the term used by Qiskit to stand for the operations
and transformations that are like preprocessing and compilation.
The process of transpiling involvesmany steps, including decompos-
ing non-native quantum gates into groups of native gates, grouping
and removing quantum gates to reduce the number of gates, map-
ping the logic qubits in the original circuits to the physical qubits on
the specified quantum computers, routing the circuit under limited
topologies, potentially optimizing circuits to lower error, and so on.
After transpilation, circuits are modified based on hardware-specific
knowledge and will generate the same logical results as the original
circuits. Circuits up to this point are all gate-level circuits, which
use a more general description so that they are understandable by
people and can be portable in many cases, though they may still
need to be transpiled if they are going to be performed on other
kinds of quantum computers.

A lower-level step after transpilation is termed schedule in Qiskit.
Scheduling further maps quantum circuits to microwave pulses,
which are the ultimate physical operations used to regulate and
control qubits. Because of this, scheduling transforms gate-level
circuits into pulse-level circuits. Each microwave pulse is character-
ized by a series of parameters, such as amplitude and frequency, etc.,
discussed previously in Section 2.3. Based on previously calibrated
data for each basis gate on each qubit or qubit pair and quantum
gadget, scheduling creates microwave pulse sequences. Wave en-
velopes, frequencies, amplitudes, durations, and other parameters
that characterize microwave pulses are included in the data. The
final data contains all information that needs to be known by quan-
tum computers to execute the program. After the quantum program
starts, the equipment of quantum computers will be manipulated
by this information, and qubits are controlled by the equipment to
carry out quantum programs.
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The steps discussed above convert the initial quantum circuits
to a set of instructions that can be used to accomplish the specified
quantum programs. As an example of running quantum programs,
IBMQuantum provides Qiskit for users as the tool to design circuits,
perform these steps, and submit quantum programs to the cloud,
and finally, the cloudwill execute the users’ programs and return the
results to users. The above-discussed process needs to be observed
in general. In this process, scheduling and even transpilation can be
omitted on the user side to simplify the overall development cycles,
but they still need to be done on the server side.

2.6 Execution of Circuits and Shots
In nowadays quantum computing cloud platforms, quantum pro-
grams are usually submitted and executed in a particular pattern
according to the platform settings. Because the results of most of
the quantum algorithms are probabilistic, the same quantum algo-
rithms usually need to be run many times to get the probabilistic
results. One execution of the circuit is also often called one shot.

On IBMQuantum, users can submit one circuit or a list of circuits,
and specifies how many shots the quantum jobs should run. When
the quantum job starts, the quantum circuits are executed one by
one sequentially. Between the quantum circuits, there is some reset
mechanism to let qubits return to |0⟩ states, such as a long duration
for qubits to decohere.

3 TREAT MODEL
3.1 Threat Model Background
3.1.1 Channel. As introduced in Section 2.3, pulses are applied to
drive designated qubits. Which qubits should be controlled are spec-
ified by channels. It normally needs one channel for single-qubit
gates and several channels for multiple-qubit gates. Channels can
be mainly categorized into 4 types: drive channels that transmit
signals to qubits that enact gate operations, control channels that
provide supplementary control over the qubit to the drive channel,
measure channels that transmit measurement stimulus pulses for
readout, and acquire channels that are used to collect data. Drive
channels and control channels are of more interest in this paper
because they specify quantum gates. Generally speaking, drive
channels correspond to qubits, and control channels correspond
to connections between qubits. The number of channels of a quan-
tum device is determined by its architecture. More specifically, the
number of drive channels is usually equal to the number of qubits,
and the number of control channels is usually equal to the number
of connections between two qubits.

3.1.2 Basis Pulse. In Section 2.5, the typical process of running a
quantum circuit is introduced. Every quantum circuit needs to be
transpiled to a quantum circuit that contains only the basis gates of
the target quantum device. We refer to the set of pulses after a basis
gate is scheduled as its basis pulses. Because pulse parameters are
highly dependent on qubit physical properties, while the quantum
gate is an abstract concept, the same type of gate on different
channels has different pulse parameters. For example, X gate on
qubit 0 commonly has different pulse parameters from X gate on
qubits other than 0. However, because basis gates and their pulse
sets are predefined, they usually are the same.

3.1.3 Basis Pulse Library. The set of basis pulses of all basis gates
is needed for scheduling. We refer to the set of pulses that defines
all basis gates as basis pulse library. The information on basis pulses
is provided by IBM Quantum for all their quantum devices. No-
tice that IBM Quantum also supports the so-called custom pulse
gates, which allows users to perform gates calibrated with arbitrary
pulses [43], and these gates are not changed in the transpilation
and scheduling process. However, more work and a deeper under-
standing are needed for the correct utilization of this feature, and
for most use cases, custom pulse gates are not needed. Therefore, in
our assumption, we assume that the victim circuits do not contain
any custom pulse gates.

3.1.4 Power Trace. Because pulses are needed to control super-
conducting qubits, these operations consume energy. We denote
power trace as the time series of the power cost by the operations
controlling qubits. The total power tracemeans the time series of the
summation of the powers over all channels in a time period, while
the individual power trace means the power trace on one specific
channel. Suppose that there is equipment that can measure power
consumption on some or all of the channels, and this measured
power trace will consist of and depend on a number of channels.

3.2 Assumptions of Attacker Measurement
Our work assumes that an attacker has the ability to measure tim-
ing or power associated with the execution of quantum circuits.
Specifically, we assume the attacker can measure these properties
for each shot of a circuit, or they can measure a number of shots
and it is easy to divide this into individual shots as discussed below,
since all shots perform the same operations. Recall in Section 2.6,
that each quantum program, i.e., quantum circuit, is executed mul-
tiple times, and each execution is called a shot. We assume physical
access is common when considering power side-channel attacks
in classical computers. Given the assumed physical access, timing
information can also be obtained as discussed below.

3.2.1 Per-Shot Timing Measurements. We assume the attacker is
able to measure the execution timing of the victim circuit. As shown
in Figure 3, we assume the attacker is able to capture the traces
of the control pulses. From the traces, the attacker can observe
when pulses are occurring. In particular, the shots of a circuit are
separated by inter-shot delay, which is used to reset the state of the
qubits to |0⟩ before the next shot of a circuit is executed. Today this
delay in superconducting qubit machines is on the order of 250 us,
but will become longer as the decoherence times of the machines
increase. The clear separation and the same pattern of the shots
allow the attacker to measure their duration, and when one shot
ends and the next begins.

3.2.2 Per-Shot Power Measurements. We assume the attacker is
able to measure average power, and total energy, and collect power
traces. As shown in Figure 4, we assume the attacker has access to
the qubit drive equipment. From the arbitrary waveform generators
or the mixer, we assume the attacker can collect the power data.

3.2.3 Per-Channel Power Measurement. As shown schematically
in Figure 4 (A), we assume the attacker is able to collect per-channel

5
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Figure 4: Quantum Computer power side-channel attack setups.

power traces; this corresponds to our Per-Channel Single Trace
Attacks.

3.2.4 Total Power Measurement. A weaker attacker could be lim-
ited to collect only a single power trace of the combined channels,
as shown in Figure 4 (B); this corresponds to our Total Power Single
Trace Attacks.

3.2.5 Single Power-Related Measurement. Even weaker attackers
may only get total energy or average power, which corresponds
to our Single Measurement Attacks. Similarly, weak attackers may
get only the timing of each shot, by observing the shot patterns
with the inter-shot delays. This corresponds to our Timing Attack.

By collecting power traces for the duration of the shot, shown by
Figure 4 (i), the attacker can deploy all of our proposed attacker’s
goals in Sections 1.3. A more powerful attacker that has knowledge
of the type of circuit running, but not the oracle or the ansatz used,
or does not have the knowledge of the quantum processor on which
the circuit ran, can measure power traces for specific portions of
the shot, shown in Figure 4 (ii); this corresponds to our Circuit
Oracle Identification (CO), Circuit Ansatz Identification (CA), and
Quantum Processor Identification (QP) attacks.

3.3 Assumptions of Attacker’s Knowlege
We want to clarify that the attacker is assumed to know at all
times: the information of quantum computers (number of qubits it
contains, the topology and connections of the qubits) and the basis
pulse libraries of them. We assume custom gates are not used by
users, and all victim circuits are composed only of the basic gates
supported by the quantum computer, typically including I, RZ, SX,
X, and CX for IBM Quantum devices. Among the basic gates, we
assume the RZ gates are virtual, as is common today. For an attacker
who has only access to collect total power traces, we assume he or
she knows the in-channel and cross-channel functions that define
how the per-channel and total power traces correspond to the pulse
information, which will be discussed in Section 4.2.

We assume the attacker knows when the victim circuits will be
executed. Precise knowledge of the execution time is not needed
as long as the attacker can capture the trace of one shot. Since the
victim often executes thousands of shots, the attacker has multiple
chances to capture at least one trace. Each shot is identical without
considering the noise.
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4 EXPERIMENT SETUP
4.1 Benchmarks Used
In this paper, we usedQASMBench Benchmark Suite version 1.4 [30]
for NISQ evaluation. Unless otherwise specified, ibm_lagos, a 7-
qubit H-shape superconducting quantum computer (coupling map
is shown in Figure 7c) is used for transpilation and scheduling. Due
to the limitation of the number of qubits of ibm_lagos, we chose all
algorithms whose numbers of qubits are less or equal to 7. Detailed
information about the benchmark can be found in Table 1.

We removed benchmarks “ipea" (iterative phase estimation algo-
rithm) and “shor" (Shor’s algorithm) for evaluation because they
have Reset and middle measurement that cannot be scheduled on
ibm_lagos due to lack of basis pulses. Without otherwise specified,
we used seed_transpiler = 0 to control the randomness and
other default parameters for transpilation.

4.2 Power Traces
We refer in-channel and across-channel functions as the functions
for computing the per-channel power traces and the total power
traces from pulse information. The in-channel function, which
we denote as 𝑃𝑜𝑤𝑒𝑟𝑐 [𝑝𝑐 (𝑥)], where 𝑐 represents the channel and
𝑝𝑐 (𝑥) represents the pulse amplitude time series on that channel,
specifies how the per-channel power traces are computed from
pulse amplitude. The across-channel function, which we denote
as 𝑇𝑜𝑡𝑎𝑙 [𝑓𝑐1 (𝑥), . . . , 𝑓𝑐𝑛 (𝑥)], where 𝑐𝑖 , 𝑖 ∈ {1, . . . , 𝑛} represent all
the channels of one quantum processor, specifies how the total
power traces are summed up from all per-channel power traces
𝑓𝑐 (𝑥). Based on these definitions, the total power traces 𝑃 (𝑥) can be
computed from the per-channel pulse amplitude time series 𝑝𝑐𝑖 (𝑥):

𝑃 (𝑥) = 𝑇𝑜𝑡𝑎𝑙
{
𝑃𝑜𝑤𝑒𝑟𝑐1 [𝑝𝑐1 (𝑥)], . . . , 𝑃𝑜𝑤𝑒𝑟𝑐𝑛 [𝑝𝑐𝑛 (𝑥)]

}
(1)

In the experiment, the total power traces, the per-channel power
traces, and the pulse amplitude time series are all one-dimensional
time series. To simulate the in-channel and across-channel func-
tions, we assume:

𝑃𝑜𝑤𝑒𝑟𝑐 [𝑝𝑐 (𝑥)] = Re2 [𝑝𝑐 (𝑥)] + Im2 [𝑝𝑐 (𝑥)] (2)

and:
𝑇𝑜𝑡𝑎𝑙 [𝑓𝑐1 (𝑥), . . . , 𝑓𝑐𝑛 (𝑥)] =

∑︁
𝑖∈{1,...,𝑛}

𝑓𝑐𝑖 (𝑥) (3)

which means the per-channel power traces are the square of the
norm of the amplitude, and the total power traces are directly the
summation of per-channel power traces with the same weight.

In our experiments, we obtained the pulse information from
Qiskit APIs provided by IBM Quantum on each of the target quan-
tum computers. From the pulse information, we computed the
per-channel and the total power traces using the above functions.

4.3 Circuit Norm and Distance
To evaluate the results, we define 3 metrics: circuit norm, circuit dis-
tance between two circuits, and normalized circuit distance between
two circuits, all of which are in terms of the total power traces:

(1) 𝑛𝑜𝑟𝑚(𝐶): the circuit norm of the circuit 𝐶 with the total
power traces 𝑃𝐶 (𝑥) is 𝑓𝑛𝑜𝑟𝑚 [𝑃𝐶 (𝑥)]

(2) 𝑑𝑖𝑠𝑡 (𝐶1,𝐶2): the circuit distance of the circuit 𝐶1 and the
circuit 𝐶2 is 𝑓𝑑𝑖𝑠𝑡 [𝑃𝐶1

(𝑥), 𝑃𝐶2
(𝑥)].

(3) 𝑛𝑜𝑟𝑚_𝑑𝑖𝑠𝑡 (𝐶1,𝐶2): the normalized circuit distance of the
circuit 𝐶1 and the circuit 𝐶2 is 1

𝑛𝑜𝑟𝑚 (𝐶1) 𝑑𝑖𝑠𝑡 (𝐶1,𝐶2).
The definitions depend on the choice of the norm 𝑓𝑛𝑜𝑟𝑚 and distance
function 𝑓𝑑𝑖𝑠𝑡 . In this paper, we choose the Euclidean norm and
distance for these two functions, i.e., 𝑓𝑛𝑜𝑟𝑚 ( ®𝑎) =

√︃∑𝑛
𝑖=1 𝑎

2
𝑖
and

𝑓𝑑𝑖𝑠𝑡 ( ®𝑎, ®𝑏) =
√︃∑𝑛

𝑖=1 (𝑎𝑖 − 𝑏𝑖 )2.

5 EVALUATION
5.1 User Circuit Identification (UC)
To further expand the circuit list, we chose different initial layouts
in the transpilation so that the same circuit can be transpiled into
different circuits based on the hardware configuration. For an 𝑛-
qubit circuit on 𝑘-qubit backend, the number of initial layouts is
in total

(𝑛
𝑘

)
. In the experiment, we chose 8 circuit lists 𝐶𝐿𝑖 , where

𝑖 is the number of initial layouts. We choose 𝑖 to be 1, 2, 4, 8, 16,
32, 64, 128. The exact initial layout is randomly selected from

(𝑛
7

)
initial layouts. If for one circuit, 𝑖 >

(𝑛
7

)
, which means there are not

enough initial layouts, then we choose all the
(𝑛
7

)
permutations as

the initial layouts. For reference, after expanding, the number of
circuits in the circuit list is listed in Table 2.

Besides the total power traces, three additional physical quanti-
ties are also used to evaluate the results: energy, mean power, and
duration of the circuit. The energy is simulated by adding all terms
of the one-dimensional total power time series, which is the total
energy in the dt unit of the circuit. The duration is the time from
the start to the end of the circuit in the dt unit, which is also the
same as the length of the one-dimensional total power time series.
The mean power is then computed by dividing the energy by the
duration. For a circuit 𝐶 , we used 𝑣𝑝 (𝐶), 𝑣𝑒 (𝐶), 𝑣𝑚 (𝐶), and 𝑣𝑑 (𝐶)
to represent these values.

For the experiment of identifying user circuits from the knowl-
edge of possible circuits, we define the accuracy under some ex-
periment settings to be the proportion of circuits in the circuit
list that are correctly identified. More specifically, for each circuit
𝐶 ∈ 𝐶𝐿𝑖 , we calculated the distance 𝑑𝑖𝑠𝑡 (𝑥) (see Section 4.3) with
the physical quantity 𝑞(𝑥) between it and all the circuits in the list:

𝑑𝑖𝑠𝑡 [𝑞(𝐶), 𝑞(𝐶 ′)], ∀𝐶 ′ ∈ 𝐶𝐿𝑖 (4)

The identification for the circuit𝐶 is chosen to be the circuit with the
smallest distance between themeasured and the software-generated
physical quantities of this circuit:

id𝑖,𝑞 (𝐶) = min
𝐶′∈𝐶𝐿𝑖

𝑑𝑖𝑠𝑡 [𝑞(𝐶), 𝑞(𝐶 ′)] (5)

In the case of UC, it is assumed that the attacker knows a list
of quantum circuits, and the victim circuit is chosen from this list.
The attacker has access to all circuits in the list, and the attacker
measured the power traces of victim circuits. The goal of the at-
tacker is to find the correct circuits from which the power traces
were generated.

Figure 5a – Figure 5c shows the energy, mean power, and dura-
tion of the original benchmark. The distribution gives an insight
into how these physical quantities perform in identifying user cir-
cuits. Based on the experiment setup above, we computed the ac-
curacy, which is shown in Figure 6. As the figure shows, though
power-related traces are harder to gather than timing traces, they
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Benchmark Description Algorithm Reference

deutsch Deutsch algorithm with 2 qubits for f(x) = x Hidden Subgroup [13]
iswap An entangling swapping gate Logical Operation [13]
quantumwalks Quantum walks on graphs with up to 4 nodes Quantum Walk [33]
grover Grover’s algorithm Search/Optimization [2]
ipea* Iterative phase estimation algorithm Hidden Subgroup [13]
dnn 3 layer quantum neural network sample Machine Learning [45]

teleportation Quantum teleportation Quantum Communication [21]
qaoa Quantum approximate optimization algorithm Search/Optimization [27]
toffoli Toffoli gate Logical Operation [28]
linearsolver Solver for a linear equation of one qubit Linear Equation [12]
fredkin Controlled-swap gate Logical Operation [28]
wstate W-state preparation and assessment Logical Operation [13]
basis_change Transform the single-particle basis Quantum Simulation [31]

qrng Quantum random number generator Quantum Arithmetic [47]
cat_state Coherent superposition of two coherent states Logical Operation [28]
inverseqft exact inversion of quantum Fourier tranform Hidden Subgroup [13]
adder Quantum ripple-carry adder Quantum Arithmetic [28]
hs4 Hidden subgroup problem Hidden Subgroup [28]
bell Circuit equivalent to Bell inequality test Logic Operation [17]
qft Quantum Fourier transform Hidden Subgroupe [13]
variational Variational ansatz for a Jellium Hamiltonian Quantum Simulation [31]
vqe_uccsd Variational quantum eigensolver with UCCSD Linear Equation [28]
basis_trotter Trotter steps for molecule LiH at equilibrium Quantum Simulation [31]

qec_sm Repetition code syndrome measurement Error Correction [13]
lpn Learning parity with noise Machine Learning [44]
qec_en Quantum repetition code encoder Error Correction [44]
shor* Shor’s algorithm Hidden Subgroup [24]
pea Phase estimation algorithm Hidden Subgroup [13]
error_correctiond3 Error correction with distance 3 and 5 qubits Error Correction [34]

simons Simon’s algorithm Hidden Subgroup [2]
qaoa Quantum approximate optimization algorithm Search & Optimization [17]
vqe_uccsd Variational quantum eigensolver with UCCSD Linear Equation [28]

hhl HHL algorithm to solve linear equations Linear Equation [25]
* These circuits contain the middle measurement and Reset gate, and cannot be scheduled on the backend currently because their basis pulses are not provided.

Table 1: QASMBench Benchmark Suite version 1.4 [30].

No. Layouts 1 2 4 8 16 32 64 128
No. Circuits 31 62 124 248 496 992 1874 3538

Table 2: Number of circuits in the circuit list with different
numbers of layouts.

have a better performance when identifying user circuits. As the
number of layouts increases, the accuracy computing by duration
decreases much more than power-related metrics. One reason is
that duration is in dt unit, making it easier to be the same for
different circuits, while power-related metrics are more distinct
from each other. In addition to the distinguishability, it is easier to
protect from timing attacks by adding delay gates to change the
duration to make the duration of quantum circuits in the list to be

the same, but it is harder to hide the information about the power
or energy without changing the function of the quantum circuits.

5.2 Circuit Oracle Identification (CO)
Many quantum algorithms consist of oracles, which act like black
boxes that return desired quantum states based on the input. For
example, a Boolean oracle change the input states to another binary
representation, i.e.,𝑈𝑓 |𝑥⟩ ⊗

��0̄〉 = |𝑥⟩ ⊗ |𝑓 (𝑥)⟩; a phase oracle does
not change the state but change its phase, i.e., 𝑃𝑓 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩.

For CO, we choose three textbook algorithms for how the oracle
can be identified with the quantum computing power side-channels:

(1) Bernstein-Vazirani (BV) [9]: given an oracle 𝑓 (𝑥) = 𝑠 ·𝑥 , find
the hidden 𝑠 in the oracle.

(2) Deutsch-Jozsa (DJ) [14]: given an oracle 𝑓 (𝑥) = 0 or 1, which
is either a constant function whose outputs are all 0 or all 1,

8



Exploration of Quantum Computer Power Side-Channels

de
ut

sc
h_

n2
dn

n_
n2

gr
ov

er
_n

2
isw

ap
_n

2
qu

an
tu

m
wa

lk
s_

n2
ba

sis
_c

ha
ng

e_
n3

fre
dk

in
_n

3
lin

ea
rs

ol
ve

r_
n3

qa
oa

_n
3

te
le

po
rta

tio
n_

n3
to

ffo
li_

n3
ws

ta
te

_n
3

ad
de

r_
n4

ba
sis

_t
ro

tte
r_

n4
be

ll_
n4

ca
t_

st
at

e_
n4

hs
4_

n4
in

ve
rs

eq
ft_

n4
qf

t_
n4

qr
ng

_n
4

va
ria

tio
na

l_n
4

vq
e_

n4
vq

e_
uc

cs
d_

n4
er

ro
r_

co
rre

ct
io

nd
3_

n5
lp

n_
n5

pe
a_

n5
qe

c_
en

_n
5

qe
c_

sm
_n

5
qa

oa
_n

6
sim

on
_n

6
vq

e_
uc

cs
d_

n6
hh

l_n
7

0

50000

100000

150000

200000

250000

300000

En
er

gy

(a) Energy of the benchmark.
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(b) Mean power of the benchmark.
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Figure 5: Energy, mean power, and duration of the circuits in the benchmark.

or a balanced function whose outputs are half 0 and half 1,
find whether the oracle is constant or balanced.

(3) Grover’s Search (GS) [23]: given an oracle 𝑓 (𝑥) to reflect the
states, find a state specified by the oracle.

All these algorithms can have an arbitrary number of qubits.
We tested from 1-qubit to 6-qubit versions, and for all the 𝑛-qubit
algorithms, the parameters specifying the oracles are tested from
0 · · · 0 to 1 · · · 1. Since if the function for DJ is constant, the oracle
can be an empty circuit, we only tested the balanced function.

The minimum normalized circuit distance is used to evaluate
the results, shown in Table 3. For BV, since the oracles are quite
different from each other, the minimum circuit distance is not 0,
which means the oracles can be distinguished from each other.
However, for DJ and GS, the circuits for different oracles can be the
same, and the only changes are the angles of the rotation gates, such

Algorithm Number of Qubits/Oracles
1/2 2/4 3/8 4/16 5/32 6/64

Bernstein-Vazirani 1.00 0.30 0.07 0.06 0.07 0.06
Deutsch-Jozsa 0.00 0.00 0.00 0.00 0.00 0.00
Grover’s Search 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Evaluation for circuit oracle identification (CO).
Normalized circuit distance for Bernstein-Vazirani, Deutsch-
Jozsa, and Grover’s Search with the number of qubits from
1 to 6 on ibm_lagos. Bernstein-Vazirani and Deutsch-Jozsa
need one additional qubit to control the oracle.

as RZ gate. Since RZ is a virtual gate on IBM quantum backends with
no duration and amplitudes, all circuits have the same power traces
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Figure 6: Evaluation for user circuit identification (UC). Ac-
curacy based on 4 metrics: power time series, energy, mean
power, and duration. The circuit list is expanded by tran-
spiling the benchmark with a number of initial layouts.

and thus cannot be distinguished from each other. More details of
the virtual RZ gate will be discussed in Section 6.1.

Another thing that needs to pay attention for circuit oracle iden-
tification is that circuits after transpilation are highly dependent
on the transpiler settings. For example, the oracles of some algo-
rithms have symmetries, such as 3-qubit Bernstein-Vazirani with
"01" and "10" as the hidden string, the transpiler may output the
same circuits. This can be achieved by changing the bit order of
the measurement results. In our experiment, to show that quantum
computer power side-channels can be exploited to retrieve the in-
formation of oracles, we forced the initial layouts of all circuits to
be the same to avoid such transpilation.

5.3 Circuit Ansatz Identification (CA)
One important application of quantum computing is solving opti-
mization problems, such as finding the minimum eigenvalue of a
matrix. The Variational Quantum Eigensolver (VQE) [40] and the
Quantum Approximate Optimization Algorithm (QAOA) [20] are
the representative quantum algorithms for optimization. Besides,
quantum machine learning [10] and quantum deep learning [51]
are also actively researched. These algorithms solve the optimiza-
tion problem by generating appropriate quantum states through
parameterized circuits and iteratively updating parameters to find
the extremes. These circuits are also often called ansatz.

For identifying circuit ansatz, we chose 6 ansatz circuits from the
benchmark, "qaoa_n3", "variational_n4", "vqe_n4", "vqe_uccsd_n4",
"qaoa_n6", "vqe_uccsd_n6", and computed the minimum normal-
ized circuit distance between these circuits, which is 0.970. Such a
large normalized circuit distance proves the ability to effectively
distinguish them.

In addition to the ansatz circuit configuration, another impor-
tant piece of information about the ansatz circuit is its parameters.
However, due to the same reason discussed in Section 5.2 why ora-
cle for Deutsch-Jozsa or Grover’s search cannot be identified, the
parameters usually only change the rotational angles of the virtual
RZ gates in the ansatz circuit, while other real gates remain the
same, it is impossible to retrieve any information from the power

traces about the parameters. More discussion about the virtual RZ
gate will be discussed in Section 6.1.

5.4 Qubit Mapping Identification (QM)
As discussed in previous sections, the pulses for one quantum gate
on different qubit or qubit pairs are different since the pulses need
to be calibrated based on the qubit’s physical properties to achieve
the same logical operations. Thus, the power traces also encode
the information of the quantum processor on which the circuit
was executed. This information includes the physical qubits to
which the quantum gates are applied, and this motivates the goal of
identifying the qubit mapping of the quantum circuit. For example,
Figure 5d shows the mean power of 2-qubit Grover’s search with
different initial layouts.

Before the quantum circuit is executed on the quantum device,
the mapping from the logical qubits to the physical qubits must be
specified. In the transpilation process of Qiskit, the qubit mapping
is automatically selected if no input for the layout is given. In the
experiment, we selected 10 initial layouts for each circuit in the
benchmark, and compute the minimum normalized circuit distance
in the circuit list.

The results are shown in the QM column of Table 4. Nearly all
the benchmark has a large minimum normalized circuit distance,
which indicates that they can be well distinguished from each other.
However, the minimum normalized circuit distance of “inverseqft"
(inverse quantum Fourier transformation) and “qrng" (quantum
random number generator) is 0. The reason is that the circuits for
both these algorithms only consist of single-qubit gates (“inverseqft"
also has the dynamical RZ gate), so when changing the order of
the qubits in the initial layout, it does nothing to the circuit. For
example, the circuits with initial layout [0, 1, 2, 3] and [1, 0, 2, 3]
are the same, and therefore the circuit distance is 0 between these
two circuits with such initial layouts. However, the circuit distance
is not 0 if the initial layouts contain at least 1 different qubit.

5.5 Quantum Processor Identification (QP)
Another kind of hardware-related information can be the quantum
processor on which the circuit was executed. Not only the basis
pulse library, but also the coupling map plays a role in determining
the power traces. The identification among quantum processors
with distinct connections may be easier for circuits with a large
number of qubits since it needs to add switch gates to the circuit
and the information of quantum processors is encoded in terms
of connections. Nevertheless, the identification among quantum
processors with the same coupling map is also feasible since the
properties of qubits are distinct across quantum processors and this
information is included in the basis pulse library.

We selected 9 IBM-Q quantum devices to show the diversity
among quantum devices: ibmq_lima, ibmq_quito, ibmq_belem,
ibmq_manila, ibmq_jakarta, ibm_oslo, ibm_nairobi, ibm_lagos,
ibm_perth. The former 4 devices are 5-qubit and the others are
7-qubit devices. There are two coupling maps for 5-qubit devices:
line-shape shown in Figure 7a and T-shape shown in Figure 7b, and
only one coupling map for the 7-qubit devices: H-shape shown in
Figure 7c. The statistics of the amplitude of X and SX gates on differ-
ent qubits are shown in Figure 7d and Figure 7e, and the statistics
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Figure 7: IBM-Q device information. (a) – (c) Three coupling maps of the IBM-Q devices. The color of nodes implies the fre-
quency (GHz) of the qubit. The connection color implies the gate time in nanoseconds for 2-qubit gates such as CX. (d) – (e)
Box plots of amplitude of X and SX and duration of CX on 9 IBM Quantum backends.

of the duration of CX gates is shown in Figure 7f. All of them have
distinct features in the basis pulse library. Note that the distribution
of X and SX are the same. This is due to that only X is calibrated,
and the amplitude of SX is directly set to be half of the amplitude
of X. The disparity in amplitude and duration makes it viable to
identify and reconstruct the circuits from their power traces.

To quantify the influence of the difference of the connectivity
and basis pulse library over backends on the total power traces of
quantum circuits, we transpiled the benchmark on these 9 quantum
devices. The QP column of Table 4 shows the minimum normalized
circuit distance over these devices. Most of the circuits have large
enough circuit distances over different quantum devices, making
them straightforward to be separated individually. In addition, “in-
verseqft" and “qrng" may not be determined for qubit mapping
identification, but they are possible to be recognized for quantum
processor identification.

5.6 Reconstruction from Power Traces (RP)
If the attacker has the access to the basis pulse library, they can
readily reconstruct the circuit from the gathered per-channel power
traces. We implement the algorithm to reconstruct the circuit and
the results are shown in the RP column of Table 4. We can suc-
cessfully reconstruct all circuits in the benchmark given their per-
channel power traces.

X Gate SX Gate

Per-Channel Power Traces

Binarized List

Power Traces of X Gate Power Traces of SX Gate

Binarized X Gate Binarized SX Gate

Compare Length (Not X Gate)Compare Length (X Gate)

Found Gates

Re
m

ai
ni

ng

Po
w

er
 T

ra
ce

s

Remove

Power Traces Removed X Gates

Search PhaseRemove Phase

Boundary
Boundary

Figure 8: Algorithm for reconstructing circuits from power
traces. The algorithm includes two phases: the search phase
and the remove phase. In the search phase, the algorithm
binarizes the power traces and searches for a target gate in
the power traces by comparing the length of the binary seg-
ments with the length of the binarized power traces of the
basis gates. In the remove phase, the algorithm removes all
the target gates from the power traces and generates the new
power traces for the next iteration.

The algorithm is shown in Figure 8. The algorithm iterates all
channels and finds the corresponding pulses. The algorithm in-
cludes two phases: the search phase and remove phase. In the search
phase, the algorithm locates all gates in the power traces and selects
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Benchmark Qubits Gates CXs QM QP RP

deutsch 2 10 1 0.025 0.116 ✓
dnn 2 306 42 0.039 0.116 ✓
grover 2 15 2 0.143 0.116 ✓
iswap 2 14 2 0.143 0.116 ✓
quantumwalks 2 38 3 0.125 0.117 ✓

basis_change 3 85 10 0.673 0.068 ✓
fredkin 3 31 17 0.800 0.411 ✓
linearsolver 3 26 4 0.735 0.080 ✓
qaoa 3 35 9 0.546 0.570 ✓
teleportation 3 12 2 0.473 0.075 ✓
toffoli 3 24 9 0.096 0.573 ✓
wstate 3 47 21 0.789 0.101 ✓

adder 4 33 16 0.727 0.201 ✓
basis_trotter 4 2353 582 0.895 0.220 ✓
bell 4 53 7 0.781 0.196 ✓
cat_state 4 6 3 0.744 0.241 ✓
hs4 4 28 4 0.545 0.327 ✓
inverseqft 4 30 0 0.000 0.001 ✓
qft 4 50 18 0.817 0.287 ✓
qrng 4 12 0 0.000 0.001 ✓
variational 4 58 16 0.792 0.239 ✓
vqe 4 73 9 0.660 0.194 ✓
vqe_uccsd 4 238 88 0.858 0.241 ✓

error_c3 5 249 61 0.855 0.220 ✓
lpn 5 17 2 0.576 0.194 ✓
pea 5 126 57 0.874 0.210 ✓
qec_en 5 52 16 0.746 0.250 ✓
qec_sm 5 8 4 0.573 0.266 ✓

qaoa 6 408 84 0.869 0.283 ✓
simon 6 65 23 0.796 0.605 ✓
vqe_uccsd 6 2289 1199 0.906 0.278 ✓

hhl 7 1092 298 0.873 0.317 ✓

Table 4: Evaluation for qubit mapping (QM) identification,
quantum processor (QP) identification, and reconstruction
from power traces (RP). The numbers of gates are based on
circuits transpiled on ibm_lagos with seed_transpiler = 0
and other default arguments. Theminimum normalized cir-
cuit distance is used to evaluate the results for QM and QP.
For RP, the checkmark shows the original circuit is correctly
reconstructed given the per-channel power traces.

the target gate. In the remove phase, the algorithm removes all the
target gates from the power traces and generates new power traces
without the removed gates for the next iteration.

While multi-qubit gates may include several pulses on several
channels, and some of these pulses may have the same shape as
the single-qubit pulses, our implementation first iterates all control
channels and find all multi-qubit gates. After locating all multi-qubit
gates, the algorithm removes them from the per-channel power
traces. Then a similar process is done for single-qubit gates. The
algorithm iterates the remaining drive channels and locates specific

single qubit gates, and then removes them from the per-channel
power traces. After iterating all channels and all basis gates, the
found gates and their start times are the output of the algorithm.

For IBM-Q quantum devices, there are only three real gates, X,
SX, and CX. The pulse shapes of all these gates are Gaussian-related,
such as the Derivative Removal by Adiabatic Gate (DRAG) pulse
or Gaussian Square. Based on these characteristics, we transform
the goal of finding the pulses in the power traces into finding
the segment in the binary list. This is done by binarizing the per-
channel traces based on an input boundary, i.e., if the power is
larger than the boundary, its value is set to be 1, and set to 0 if not.
The same process is also done for the software-generated power
traces of basis gates. After binarizing, the per-channel power traces
are transformed into a list of continuous 1s and 0s if the boundary
is correctly set to be between 0 and the maximum of the amplitude.
Then the pulses can be identified by classifying segments of 1s.

There are two ways to determine the gates. The first way is
to use a uniform boundary, and because X and SX have the same
duration but different amplitude, and the pulse shapes are similar
to the Gaussian function and they do not have any abrupt change,
their binary forms have different lengths. The type of gate can be
identified by comparing the length of the segment in the binary
list with the length of the binary form of the power traces of basis
pulses. The second way is to use different boundaries in the search
phase, i.e., firstly set a boundary between the maximum of the
power traces of X and SX, so only X can be found. After removing
X, then set a boundary between 0 and the maximum of the power
traces of SX. The start time can be easily computed at the same time
and set to the granularity of the quantum device, where the pulses
must start at multiples of the granularity.

The binarizing process is to make the method more robust under
measurement noise. Another parameter for robustness is tolerance,
which means the allowed length difference when comparing the
length of the segment in the binary list and the length of the bi-
nary form of the power traces of the basis gate. If the difference
between these two is in the range of tolerance, then it is chosen to
be identified. The boundary and the tolerance are coupled in the
way that the binary form of the power of one basis gate cannot be
mixed with another in the range of the tolerance.

6 DEFENSES
In this section, we present a possible defense against quantum
computer power-side channel attacks.

6.1 Defense via Virtual RZ Gate Substitution
RZ gate is usually one of the basis gates in superconducting quan-
tum computers, which rotates a single qubit around the Z axis
in the Bloch sphere. While other basis gates have their calibrated
pulses, RZ gate can be implemented easily as a virtual gate with the
arbitrary wave generators (AWG) [29, 32]. If RZ gate is implemented
as a virtual gate, then it will be "perfect", i.e., no actual pulses are
needed and thus it takes no time to execute. As we assume that the
power consumption depends on the amplitudes of pulses, RZ gate is
undetectable in power-side channels on the quantum devices where
it is designed to be virtual. Virtual RZ gate is valuable because any
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arbitrary SU(2) gate can be decomposed as [32]:

𝑈 (\, 𝜙, _) = 𝑍𝜙−𝜋/2𝑋𝜋/2𝑍𝜋−\𝑋𝜋/2𝑍_−𝜋/2 (6)

where 𝑍\ is RZ gate with the rotational angle \ and 𝑋𝜋/2 is RX gate
with rotational angle 𝜋/2, or SX gate with a global phase. Therefore,
any single-qubit gates can be realized with only 𝑋𝜋/2 and virtual
RZ gate.

To protect quantum computers from power-side channel attacks,
RZ gate can be added to form a new circuit that is logically equiva-
lent to the original circuits. With randomized compiling, it is proved
that the new circuit can be generated while only introducing a little
or no experimental overhead [48]. More formally, the virtual RZ
gate scheme is to change one quantum gate𝑈 to 𝐴 and 𝐵:

𝑈 = 𝑈1 · · ·𝑈𝑘 (7)

where at least one𝑈𝑖 , 𝑖 ∈ 1, . . . , 𝑘 is 𝑅𝑍 (\ ) and𝑈 and𝑈𝑖1 · · ·𝑈𝑖𝑛 are
not equivalent. By modifying the circuit and replacing randomly
selected gates with equivalent gate sequences that contain RZ gates,
the attacker will not be able to reconstruct the original circuit fully
from the power traces since he or she does not know where the RZ
gates are, and what are the rotation angles.

7 CONCLUSION
This work presented the first exploration of power side-channels of
quantum computers. We propose the threat model and several ap-
plications of quantum computer power side-channels, and evaluate
how effective power traces can be used in the various cases. As this
work shows, power side-channels attacks could be powerful and
practical for inferring secret information about circuits executing
on quantum computers.
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